The study, published in the journal Advanced Energy Materials, paves the way for new solar cell manufacturing techniques and the promise of developments in renewable solar energy. Scientists from the Universities of Sheffield and Cambridge used the ISIS Neutron Source and Diamond Light Source at STFC Rutherford Appleton Laboratory in Oxfordshire to carry out the research.
Plastic (polymer) solar cells are much cheaper to produce than conventional silicon solar cells and have the potential to be produced in large quantities. The study showed that when complex mixtures of molecules in solution are spread onto a surface, like varnishing a table-top, the different molecules separate to the top and bottom of the layer in a way that maximises the efficiency of the resulting solar cell.
Dr Andrew Parnell of the University of Sheffield said, "Our results give important insights into how ultra-cheap solar energy panels for domestic and industrial use can be manufactured on a large scale. Rather than using complex and expensive fabrication methods to create a specific semiconductor nanostructure, high volume printing could be used to produce nano-scale (60 nano-meters) films of solar cells that are over a thousand times thinner than the width of a human hair. These films could then be used to make cost-effective, light and easily transportable plastic solar cell devices such as solar panels."
Dr. Robert Dalgliesh, one of the ISIS scientists involved in the work, said, "This work clearly illustrates the importance of the combined use of neutron and X-ray scattering sources such as ISIS and Diamond in solving modern challenges for society. Using neutron beams at ISIS and Diamond's bright X-rays, we were able to probe the internal structure and properties of the solar cell materials non-destructively. By studying the layers in the materials which convert sunlight into electricity, we are learning how different processing steps change the overall efficiency and affect the overall polymer solar cell performance. "
"Over the next fifty years society is going to need to supply the growing energy demands of the world's population without using fossil fuels, and the only renewable energy source that can do this is the Sun," said Professor Richard Jones of the University of Sheffield. " In a couple of hours enough energy from sunlight falls on the Earth to satisfy the energy needs of the Earth for a whole year, but we need to be able to harness this on a much bigger scale than we can do now. Cheap and efficient polymer solar cells that can cover huge areas could help move us into a new age of renewable energy."
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by Science and Technology Facilities Council (STFC).
Journal Reference:
Paul A. Staniec, Andrew J. Parnell, Alan D. F. Dunbar, Hunan Yi, Andrew J. Pearson, Tao Wang, Paul E. Hopkinson, Christy Kinane, Robert M. Dalgliesh, Athene M. Donald, Anthony J. Ryan, Ahmed Iraqi, Richard A. L. Jones, David G. Lidzey. The Nanoscale Morphology of a PCDTBT:PCBM Photovoltaic Blend. Advanced Energy Materials, 2011; DOI: 10.1002/aenm.201100144Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
No comments:
Post a Comment