Thursday, March 29, 2012

Soft ray looks to save lives by developing rapid, low-cost system for detection of bacteria in blood platelets

Johnson, a University of Wyoming professor of physics since 1981, is venturing from the classroom to the boardroom with his SoftRay Inc., where he has created a lab instrument that can be used in hospitals and health clinics to detect bacteria in or fungus in blood much earlier than current methodologies allow. And he is receiving assistance and expertise from the Wyoming Technology Business Center to make it happen.

"The WTBC has helped me develop a business plan. I've received feedback from venture capitalists and developed presentations to give to ," says Johnson, who is currently in the pre-venture stage of his business idea. "They've helped me connect with a lot of people in the business community."

The WTBC is a statewide business development program (under the UW Office of Research and Economic Development) that is developing a technology business incubator and an outreach program focused on early-stage, high-growth companies. The 30,000-square-foot facility, which opened in 2006, offers laboratory, office and shared-conference room space for client companies as well as a state-of-the-art data center.

Johnson has created a technology he calls FountainFlow cytometry, which is used for measuring microorganisms in food, water and . The platform technology can be used to detect environmental or drinking water contamination, fungus in the blood and bacteria in blood platelets -- and more quickly than current detection methods, Johnson says.

Platelets are the cells in human blood which cause blood to coagulate upon exposure to air. Platelets are used for transfusions for who have undergone trauma or bled out; or for people who are immune-compromised, meaning their bodies cannot naturally produce platelets on their own.

Johnson says his technology -- which he began working on approximately six years ago because he wanted to make a significant societal impact -- can detect fungal infection in blood within a few hours compared to the current methodology, such as culturing, which takes 1-3 days to diagnose a form of fungus. That can be the difference between life and death for a patient who has gone into septic shock. A person can die from septic shock within 1-24 hours while current diagnosis typically takes 48-72 hours, Johnson says.

"A person's survival rate depends critically on quick diagnosis and treatment," Johnson says. "With our current FountainFlow platform technology, we will be able to make a diagnosis within 1-2 hours. And the physician will be able to use the appropriate drug regimen to save the person's life."

This video is not supported by your browser at this time.

In his technology, Johnson says a fluid, such as blood or water, is mixed with chemicals. It is then pumped through the hoses of the instrument. The fluid is illuminated, using light from an LED. A dye is added to the fluid, which allows Johnson to pinpoint the microorganisms he's specifically interested in detecting. When the microorganisms are illuminated with the ultra-bright LED light, the microorganisms glow. A camera, which is part of the instrument, captures video frames of that fluid flow. A computer can analyze those frames to count the number of glowing particles in the images. It then determines the number of particles per volume in the fluid flow. This process allows the physician to determine the level of infection.

"Camera technology and LED technology have both become cheaper and more powerful," Johnson says. "I've managed to ride both of those waves to develop an instrument that can conduct cell detection."

Johnson currently is conducting his research with Poudre Valley Hospital in Fort Collins and Bonfils Blood Center in Denver. Poudre Valley Hospital is a 241-bed regional medical center which serves northern Colorado, southern Wyoming and western Nebraska. Bonfils operates six community donor centers; serves nearly 200 health care facilities in Colorado and beyond; and collects nearly 154,000 units of blood annually, according to its website.

While Johnson conducts his research at his laboratory in UW's Physical Sciences Building and at Bonfils -- with the aid of National Institutes of Health (NIH) grants -- he stressed that the WTBC and its facilities have been invaluable to his efforts.

"There is a lot of commercialization with something as complicated as this device. It requires meeting with (people in the) business and scientific fields," Johnson says. "I've been able to meet with people very good at dye development, and those that have to work with blood and blood platelets. I'm constantly getting feedback. They (WTBC) really care about the success of their clients."

He adds, "The great thing about the WTBC is we have a group of people intimately familiar with high-tech business development. It's really great to have someone identify problems. Before, I felt isolated. They (WTBC) have a lot of experience."

Johnson said he has lived and learned with a previous Laramie-based business venture, First Magnitude Corp., he started. First Magnitude marketed electronic, high-sensitive cameras used for research. While that company proved profitable, Johnson admitted to some business mistakes.

"We were attracting the high end of the market, but we didn't have the patents" for the technology, Johnson recalls. "If you don't have the patents, you get taken over rapidly by the big boys."

When he started SoftRay, Johnson shuttered First Magnitude Corp. And he vowed to learn from that experience.

While UW owns the patent on Johnson's technology, Johnson has an exclusive license on the patent, which means he owns the rights to market the technology.

Johnson says he is still mulling whether he would want to manufacture the technology himself or provide a license to a large corporation with production and manufacturing facilities already in place.

"I would like to be a Laramie-based company for the foreseeable future. The bio-detection industry is growing and is in excess of $30 billion annually," Johnson says. "I'd like to be a major player in the bio-detection industry."

In addition to the health care industry, Johnson sees other potential market applications -- including detection of contamination in food and water products -- for his technology.

"We're interested in licensing technology," he says. "If someone would want to use it for bottled water, that would be huge. The sky's the limit."

Provided by University of Wyoming

Ultracold experiments heat up quantum research

University of Chicago physicists have experimentally demonstrated for the first time that atoms chilled to temperatures near absolute zero may behave like seemingly unrelated natural systems of vastly different scales, offering potential insights into links between the atomic realm and deep questions of cosmology.


This ultracold state, called "quantum criticality," hints at similarities between such diverse phenomena as the gravitational dynamics of black holes or the exotic conditions that prevailed at the birth of the universe, said Cheng Chin, associate professor in physics at UChicago. The results could even point to ways of simulating cosmological phenomena of the early universe by studying systems of atoms in states of quantum criticality.


"Quantum criticality is the entry point for us to make connections between our observations and other systems in nature," said Chin, whose team is the first to observe quantum criticality in ultracold atoms in optical lattices, a regular array of cells formed by multiple laser beams that capture and localize individual atoms.


UChicago graduate student Xibo Zhang and two co-authors published their observations online Feb. 16 in Science Express and in the March 2 issue of Science.


Quantum criticality emerges only in the vicinity of a quantum phase transition. In the physics of everyday life, rather mundane phase transitions occur when, for example, water freezes into ice in response to a drop in temperature. The far more elusive and exotic quantum phase transitions occur only at ultracold temperatures under the influence of magnetism, pressure or other factors.


"This is a very important step in having a complete test of the theory of quantum criticality in a system that you can characterize and measure extremely well," said Harvard University physics professor Subir Sachdev about the UChicago study.


Physicists have extensively investigated quantum criticality in crystals, superconductors and magnetic materials, especially as it pertains to the motions of electrons. "Those efforts are impeded by the fact that we can't go in and really look at what every electron is doing and all the various properties at will," Sachdev said.


Sachdev's theoretical work has revealed a deep mathematical connection between how subatomic particles behave near a quantum critical point and the gravitational dynamics of black holes. A few years hence, offshoots of the Chicago experiments could provide a testing ground for such ideas, he said.


There are two types of critical points, which separate one phase from another. The Chicago paper deals with the simpler of the two types, an important milestone to tackling the more complex version, Sachdev said. "I imagine that's going to happen in the next year or two and that's what we're all looking forward to now," he said.


Critical Experiments


Other teams at UChicago and elsewhere have observed quantum criticality under completely different experimental conditions. In 2010, for example, a team led by Thomas Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics at UChicago, observed quantum criticality in a sample of pure chromium when it was subjected to ultrahigh pressures.


Zhang, who will receive his doctorate this month, invested nearly two and a half years of work in the latest findings from Chin's laboratory. Co-authoring the study with Zhang and Chin were Chen-Lung Hung, PhD'11, now a postdoctoral scientist at the California Institute of Technology, and UChicago postdoctoral scientist Shih-Kuang Tung.


In their tabletop experiments, the Chicago scientists use sets of crossed laser beams to trap and cool up to 20,000 cesium atoms in a horizontal plane contained within an eight-inch cylindrical vacuum chamber. The process transforms the atoms from a hot gas to a superfluid, an exotic form of matter that exists only at temperatures hundreds of degrees below zero.


"The whole experiment takes six to seven seconds and we can repeat the experiment again and again," Zhang said.


The experimental apparatus includes a CCD camera sensitive enough to image the distribution of atoms in a state of quantum criticality. The CCD camera records the intensity of laser light as it enters that vacuum chamber containing thousands of specially configured ultracold atoms.


"What we record on the camera is essentially a shadow cast by the atoms," Chin explained.


The UChicago scientists first looked for signs of quantum criticality in experiments performed at ultracold temperatures from 30 to 12 nano-Kelvin, but failed to see convincing evidence. Last year they were able to push the temperatures down to 5.8 nano-Kelvin, just billionths of a degree above absolute zero (minus 459 degrees Fahrenehit). "It turns out that you need to go below 10 nano-Kelvin in order to see this phenomenon in our system," Chin said.


Chin's team has been especially interested in the possibility of using ultracold atoms to simulate the evolution of the early universe. This ambition stems from the quantum simulation concept that Nobel laureate Richard Feynman proposed in 1981. Feynman maintained that if scientists understand one quantum system well enough, they might be able to use it to simulate the operations of another quantum system that can be difficult to study directly.


For some, like Harvard's Sachdev, quantum criticality in ultracold atoms is worthy of study as a physical system in its own right. "I want to understand it for its own beautiful quantum properties rather than viewing it as a simulation of something else," he said.


Other social bookmarking and sharing tools:


Story Source:



The above story is reprinted from materials provided by University of Chicago, via Newswise.


Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

X. Zhang, C.-L. Hung, S.-K. Tung, C. Chin. Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices. Science, 2012; 335 (6072): 1070 DOI: 10.1126/science.1217990

Diamond-based materials brighten the future of electronics

 While diamonds may be a girl's best friend, they're also well-loved by scientists working to enhance the performance of electronic devices.


Two new studies performed at the U.S. Department of Energy's Argonne National Laboratory have revealed a new pathway for materials scientists to use previously unexplored properties of nanocrystalline-diamond thin films. While the properties of diamond thin films are relatively well-understood, the new discovery could dramatically improve the performance of certain types of integrated circuits by reducing their "thermal budget."


For decades, engineers have sought to build more efficient electronic devices by reducing the size of their components. In the process of doing so, however, researchers have reached a "thermal bottleneck," said Argonne nanoscientist Anirudha Sumant.


In a thermal bottleneck, the excess heat generated in the device causes undesirable effects that affect its performance. "Unless we come-up with innovative ways to suck the heat off of our electronics, we are pretty much stuck with this bottleneck," Sumant explained.


The unusually attractive thermal properties of diamond thin films have led scientists to suggest using this material as a heat sink that could be integrated with a number of different semiconducting materials. However, the deposition temperatures for the diamond films typically exceed 800 degrees Celsius -- roughly 1500 degrees Fahrenheit, which limits the feasibility of this approach.


"The name of the game is to produce diamond films at the lowest possible temperature. If I can grow the films at 400 degrees, it makes it possible for me to integrate this material with a whole range of other semiconductor materials," Sumant said.


By using a new technique that altered the deposition process of the diamond films, Sumant and his colleagues at Argonne's Center for Nanoscale Materials were able to both reduce the temperature to close to 400 degrees Celsius and to tune the thermal properties of the diamond films by controlling their grain size. This permitted the eventual combination of the diamond with two other important materials: graphene and gallium nitride.


According to Sumant, diamond has much better heat conduction properties than silicon or silicon oxide, which were traditionally used for fabrication of graphene devices. As a result of better heat removal, graphene devices fabricated on diamond can sustain much higher current densities.


In the other study, Sumant used the same technology to combine diamond thin films with gallium nitride, which is used extensively in high-power light emitting devices (LED). After depositing a 300 nm-thick diamond film on a gallium nitride substrate, Sumant and his colleagues noticed a considerable improvement in the thermal performance. Because a difference within an integrated circuit of just a few degrees can cause a noticeable change in performance, he called this result "remarkable."


"The common link between these experiments is that we're finding new ways of dissipating heat more effectively while using less energy, which is the key," Sumant said. "These processes are crucial for industry as they look for ways to overcome conventional limits on semiconducting circuits and pursue the next generation of electronics."


The results of the two studies were reported in Nano Letters and Advanced Functional Materials. Both of these studies were carried out in collaboration with Prof. Alexander Balandin at the University of California-Riverside and his graduate students Jie Yu, Guanxiong Liu and Dr. Vivek Goyal, a recent Ph.D. graduate.


Funding for the research conducted at the Center for Nanoscale Materials was provided by the Basic Energy Sciences program of the U.S. Department of Energy's Office of Science.


Story Source:



The above story is reprinted from materials provided by DOE/Argonne National Laboratory. The original article was written by Jared Sagoff.


Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal References:

Vivek Goyal, Anirudha V. Sumant, Desalegne Teweldebrhan, Alexander A. Balandin. Direct Low-Temperature Integration of Nanocrystalline Diamond with GaN Substrates for Improved Thermal Management of High-Power Electronics. Advanced Functional Materials, 2012; DOI: 10.1002/adfm.201102786Jie Yu, Guanxiong Liu, Anirudha V. Sumant, Vivek Goyal, Alexander A. Balandin. Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp2-on-sp3Technology. Nano Letters, 2012; : 120215161807006 DOI: 10.1021/nl204545q

Planting the seeds for heart-healthier fries and other foods

In the article, C&EN Senior Business Editor Melody M. Bomgardner explains that roughly 22 billion pounds of vegetable oils are used for food making in the U.S. each year. So-called partially hydrogenated vegetable oils, which can extend products' shelf-lives, were widely used in preparing restaurant foods such as , as well as snack foods and baked goods since the early 1900s. But mounting evidence in the 1990s showed that these oils are not healthful because of the trans fats that are formed in their production. Trans fats increase the risk of heart disease by raising levels of "bad" cholesterol and lowering levels of "good" cholesterol.

By the time the Food and Drug Administration began requiring food manufacturers to list trans fats on their labels in 2006, Dow and DuPont were already exploring alternatives. The companies plan to launch new seeds that promise oilseed crops with healthier fat content in 2013. Dow's Plenish was genetically engineered, while DuPont's Nexera and were produced through plant breeding. Both companies' products have high amounts of oleic acid, which has been shown to be much more heart-healthy than partially hydrogenated oils. The first target market for these "high-oleic" oils is fried foods, where they can be reused more often than current oils, resulting in a 40 percent cost savings to the food industry. Companies are still working on similar products that could replace shortenings used for baked goods.

More information: Replacing Trans Fat - http://cen.acs.org/articles/90/i11/Replacing-Trans-Fat.html

Provided by American Chemical Society (news : web)

Two-in-one imaging agents

Such magnetoluminescent imaging agents consist of three components: a luminescent probe, a contrast agent, and a linker to combine the two. The use of lanthanide complexes as luminescent probes has the advantage of affording long luminescence lifetimes, which makes the system suitable for use in time-gated luminescence spectroscopy. Enhancing the absorption of the lanthanide terbium with a phenanthridine antenna provided an ideal luminescent probe. Magnetic iron oxide nanoparticles, known for their superior longitudinal and especially transverse relaxivities, were employed as the contrast agent, and a polyethylene glycol (PEG) linker was used to coat the luminescent probes onto the magnetic nanoparticles.


In addition to a precise luminescent probe and a contrast agent with excellent relaxivities, these systems are not cytotoxic, as, for example, systems held together by silica matrices. Moreover, the PEG coating is not as thick and is more water-permeable, which results in considerably improved cellular uptake and higher relaxivity.


More information: ValĂ©rie C. Pierre, Magnetoluminescent Agents for Dual MRI and Time-Gated Fluorescence Imaging, European Journal of Inorganic Chemistry, http://dx.doi.org/ … ic.201200045