Wednesday, July 27, 2011

Roman Baths algae could fuel the future (w/ video)

Algae growing in Bath’s Roman Baths could one day be used to make fuel for our cars.

The Roman Baths are currently at the centre of a Department of Biology & Biochemistry study aimed at producing renewable biofuels from .

The race is on for a renewable liquid as oil prices skyrocket and global resources deplete rapidly. Biodiesel can be produced by extracting the oil from the algae cell, with certain types of algae having a higher oil content.

Researchers from the University are looking for ways to make the production of biodiesel from algae commercially viable.
Studying the unique algae growing in the high temperature waters of the baths might make the wide-scale production of biofuels a real possibility for future transportation energy.

Research has been carried out into creating biodiesel from algae over the past 20 years; however limitations currently prevent the technology being used on a large scale.

This video is not supported by your browser at this time.

PhD student Holly Smith-Baedorf is working on the research project. She explains: “Algae are usually happiest growing at temperatures around 25 degrees celsius and that can limit the places in which it can be cultivated on a large scale.

“Areas where these ideal conditions are available also usually make good arable areas and are therefore needed for food production.

“In an ideal world we would like to grow algae in desert areas where there are huge expanses of land that don’t have other uses, but the temperatures in these zones are too high for algae to flourish.”

But the algae growing in the hot water of the Roman Baths is perfect for the research.

Algae cells are very versatile and can change many of their characteristics in response to their environment. The protected environment in the baths gives an ideal environment in which adaptation can take place.

There are two different baths, and both maintain a steady temperature. The King’s Bath is 46 degrees celsius and the Great Bath is 39 degrees celsius; both have remained constant for many years.

The temperature of the Roman Baths is created by rain falling in the Mendip Hills, and running down through limestone at 10,000 – 14,000 feet below ground where thermal temperatures can reach nearly 100 degrees celsius.

Pressure builds up and pushes the water up through faults in the limestone, surfacing at approximately 250,000 gallons a day in the Roman Baths.

Holly said: “We have identified seven different types of algae in the baths. There are many more but they are in such low cell densities that we have difficulty isolating them, for now”.

The research team, which also includes collaborators from the Department of Chemistry, led by Professor Matt Davidson, and scientists at the University of the West of England, headed by Dr Heather Macdonald, is growing each of the seven types of algae from the Roman Baths over a range of temperatures and comparing them to ‘control’ algae known for being good for producing biodiesel at normal temperatures.

Algae project researcher, Professor Rod Scott, said: “The results of this study will help us identify whether there is a particular algae species among the seven identified in the Roman Baths that is well adapted to growing at higher temperatures and also suitable for producing sufficient amounts of biodiesel to make wide-scale production viable.”

However, while the ability to grow at high temperatures is one limitation on large-scale biodiesel production, it is not the only restraint.

Algae cell walls are particularly difficult to break making extraction of the oil inside an energy intensive process. Some algae cells are also easier to filter than others, greatly reducing the energy and economic cost of ‘harvesting’ the algae from cultures.

The research team are therefore also looking for a species of algae with a weaker cell wall, high oil content and the possibility to use cheap filtration techniques, keeping production costs low.

Professor Scott said: “There are a lot of variables that need to be right in order for the wide-scale production of biodiesel from algae to be viable, which is why it is important for us to classify and test as many species from the Roman Baths as possible.

“One species might produce a lot of oil, but if we can’t harvest the algae or break the cell walls easily then the production costs of the biodiesel will rise and it will no longer be a suitable alternative to other fuels.”

The research team is now carrying out tests on the species of algae identified to determine which most suits potential future mass growth for biodiesel production.

Provided by University of Bath (news : web)

New finding shows a research area to expand in EMSL Radiochemistry Annex

Scientists from Pacific Northwest National Laboratory and Rai Enviro-Chem, LLC, recently published first-ever results that illustrate the importance of determining hard-to-find oxidized Fe(III) reaction products in the reduction of Pu(IV) to Pu(III) by the reductant Fe(II). The shift from the insoluble Pu(IV)—the current state of plutonium contaminants within sediments at the Department of Energy’s Hanford Site—to the lower oxidation state Pu(III) is a very important reaction to study because Pu(III) is soluble, and therefore potentially more mobile in the groundwater.

However, this particular reduction reaction is far less studied than other contaminant-related reactions because of the radioactivity of the samples and the need for specialized facilities and equipment. The research team’s overall strategy was to move beyond bulk studies of Pu(IV) /Fe(II) interactions  to explore the microscopic and molecular processes involved in forming the tiny amounts of Fe(III) oxidization products that the reaction generates—a challenge that had never been attempted.

In this case, the team coupled solution-phase measurements of Pu concentrations and oxidation state determinations with SEM/TEM analysis of the reaction products, which demonstrated the enhancing role that Fe(III) reaction products play in the formation of Pu(III), and led to development of the first thermodynamic theory of such an effect. This outcome is a considerable step toward understanding the molecular mechanisms that govern the reduction from Pu(IV) to Pu(III), while also arming engineers with new information on how to inhibit the reaction in contaminated subsurface environments around the nation. Studies like these will be greatly enhanced by the addition of EMSL’s new Radiochemistry Annex, which is set to fully open to the global user community in Fall 2012. Until then, selected new radiological capabilities will become available to users beginning in August 2011.

More information: Felmy AR, et al. 2011. "Heterogeneous Reduction of PuO2 with Fe(II): Importance of the Fe(III) Reaction Product." Environmental Science & Technology 45:3952-3958. DOI: 10.1021/es104212g


Research shows 'BPA-free' bottles live up to manufacturers' claims

The alarm caused by bisphenol A (BPA) presence in reusable plastic bottles resulted in a recent industry change, producing products made with supposed BPA-free materials.

Prompted by requests and concern from consumers, University of Cincinnati (UC) researchers wanted to see if these alternatives--including products made with stainless steel and coated aluminum--were truly giving the consumer an option free of .

In a study reported in the July 8, 2011 advance online edition of the journal , Scott Belcher, PhD, associate professor in the pharmacology and cell biophysics department, and colleagues found that stainless steel- and/or co-polyester lined-aluminum did not release BPA; however, aluminum bottles lined with epoxy-based resins still resulted in BPA contamination of liquids.

"BPA is an ever-present, high-volume industrial chemical that is an estrogen and an environmental endocrine disrupting chemical," explains Belcher, adding that it has been shown in experimental models to negatively impact the heart and and enhance the growth of certain tumors.

"It is used extensively in the production of consumer goods, polycarbonate plastics, in that are used to coat metallic food and beverage cans and in other products," he continues. "There is great concern regarding the possible harmful effects from exposures that result from BPA leaching into foods and beverages from packaging or storage containers.

"The objective of this study was to independently assess whether BPA contamination of was occurring from different types of reusable drinking bottles marketed as alternatives to BPA-containing polycarbonate plastics."

Belcher says that all reusable bottles used in the study were obtained from retail sources and were constructed from polycarbonate, co-polyester, stainless steel, aluminum with co-polyester lining or aluminum with lining.

The bottles, divided into test groups based on their material or lining, and collection vials were washed and rinsed using a standardized protocol to ensure that they were free of non-experimental contaminants. The interior of each bottle was scrubbed with a soft nylon bristle brush for approximately 30 seconds with a cleaner.

Belcher says bottles were then rinsed six times with BPA-free water, two of those times with high-performance liquid chromatography (HPLT)-grade water used to identify, quantify and purify the individual components of the water, and then air dried.

"Briefly, 100 milliliters of HPLC-grade water was added to each bottle on the first day and was kept in the bottle for five days at room temperature," he says.

Three replicate experiments were performed for each bottle. The water was then rotated using a cell culture roller bottle system to ensure even contact of the water and the bottles' surface.

The effect of hot water on BPA leaching from the epoxy resin-lined bottles was measured by the addition of 100 milliliters of HPLC-grade water heated to 100 degrees on the first day.

Following the transfer of boiling water, the bottles were kept at room temperature with rotation for 24 hours during which water samples cooled to room temperature.

"Results once again showed that, at room temperature, detectable concentrations of BPA migrated from polycarbonate bottles. This confirmed our lab's previous study," says Belcher. "However, under the same conditions, BPA migration from aluminum bottles lined with epoxy-based resins was variable depending on the manufacturer. The discount store branded bottles tested released much more BPA."

He says boiling water significantly increased BPA migration from the epoxy-lined bottles. No detectable contamination was observed in water stored in bottles made from co-polyester plastic, uncoated or aluminum lined with EcoCare™.

"The results from this study show that when used according to manufacturers' recommendations, reusable water bottles constructed from 'BPA-free' alternative materials are suitable for consumption of beverages without the fear of BPA contamination," Belcher says. "BPA does, however, migrate into water stored in polycarbonate plastic and metal bottles coated with epoxy-resins, especially when heated to high temperatures.

"Consumers should not think that just because a bottle isn't polycarbonate plastic that it is safe from the dangers of BPA, but while there are no standards for claims of 'BPA-free,' it appears that 'BPA-free' labels used to market co-polyester-based water bottle alternatives actually reflect a lack of BPA contamination in liquids stored in those containers," he continues.

"While consumers have been skeptical of manufacturers' claims, these studies confirm that these specific products do offer a BPA-free alternative to polycarbonate or epoxy lined bottles and that companies have responded to their consumers' desires for BPA-free products."

Provided by University of Cincinnati (news : web)

New method for making human-based gelatin

Scientists are reporting development of a new approach for producing large quantities of human-derived gelatin that could become a substitute for some of the 300,000 tons of animal-based gelatin produced annually for gelatin-type desserts, marshmallows, candy and innumerable other products. Their study appears in ACS's Journal of Agriculture and Food Chemistry.

Jinchun Chen and colleagues explain that animal-based gelatin, which is made most often from the bones and skin of cows and pigs, may carry a risk of such as "Mad Cow" disease and could provoke immune system responses in some people. Animal-based gelatin has other draw-backs, with variability from batch to batch, for instance, creating difficulties for manufacturers. Scientists thus have sought alternatives, including development of a human-recombinant gelatin for potential use in drug capsules and other .

To get around these difficulties, the scientists developed and demonstrated a method where human gelatin genes are inserted into a strain of yeast, which can produce gelatin with controllable features. The researchers are still testing the human-yeast gelatin to see how well it compares to other gelatins in terms of its and other attributes. Chen and colleagues suggest that their method could be scaled up to produce large amounts of gelatin for commercial use.

More information: “New Strategy for Expression of Recombinant Hydroxylated Human-Derived Gelatin in Pichia pastoris KM71” J. Agric. Food Chem., 2011, 59 (13), pp 7127–7134 DOI: 10.1021/jf200778r

Gelatin is a well-known biopolymer, and it has a long history of use mainly as a gelling agent in the food industry. This paper reports a new method for producing recombinant hydroxylated human-derived gelatin in Pichia pastoris KM71. Three independent expression cassettes encoding for specific length of gelatin, prolyl 4-hydroxylase (P4H, EC, ?-subunit (?P4H), and protein-disulfide isomerase (PDI) were individually cloned in one expression vector, pPIC9K. The modified gelatin gene and two subunit genes of P4H were under the control of two different inducible promoters, namely, alcohol oxidase 1 promoter (PAOX1) and formaldehyde dehydrogenase 1 promoter (PFLD1), respectively. The results of sodium dodecylsulfate-polyacrylamide gel electrophoresis show that a recombinant gelatin was successfully expressed in P. pastoris KM71 by methanol induction. Liquid chromatography coupled with tandem mass spectrometry analysis indicates that the expressed gelatin was hydroxylated with approximately 66.7% of proline residues in the Y positions of Gly-X-Y triplets. The results of nuclear magnetic resonance spectroscopy of recombinant gelatin test show that the 1H and 13C spectra have many corresponding characteristic displacement peaks, and amino acids composition analysis shows that it contains hydroxyproline and its UV absorption is consistent with the characteristics of gelatin.

Provided by American Chemical Society (news : web)