Friday, February 10, 2012

Lab mimics Jupiter's Trojan asteroids inside a single atom

 Rice University physicists have gone to extremes to prove that Isaac Newton's classical laws of motion can apply in the atomic world: They've built an accurate model of part of the solar system inside a single atom of potassium.


In a new paper published this week in Physical Review Letters, Rice's team and collaborators at the Oak Ridge National Laboratory and the Vienna University of Technology showed they could cause an electron in an atom to orbit the nucleus in precisely the same way that Jupiter's Trojan asteroids orbit the sun.


The findings uphold a prediction made in 1920 by famed Danish physicist Niels Bohr about the relationship between the then-new science of quantum mechanics and Newton's tried-and-true laws of motion.


"Bohr predicted that quantum mechanical descriptions of the physical world would, for systems of sufficient size, match the classical descriptions provided by Newtonian mechanics," said lead researcher Barry Dunning, Rice's Sam and Helen Worden Professor of Physics and chair of the Department of Physics and Astronomy. "Bohr also described the conditions under which this correspondence could be observed. In particular, he said it should be seen in atoms with very high principal quantum numbers, which are exactly what we study in our laboratory."


Bohr was a pioneer of quantum physics. His 1913 atomic model, which is still widely invoked today, postulated a small nucleus surrounded by electrons moving in well-defined orbits and shells. The word "quantum" in quantum mechanics derives from the fact that these orbits can have only certain well-defined energies. Jumps between these orbits lead to absorption or emission of specific amounts of energy termed quanta. As an electron gains energy, its quantum number increases, and it jumps to higher orbits that circle ever farther from the nucleus.


In the new experiments, Rice graduate students Brendan Wyker and Shuzhen Ye began by using an ultraviolet laser to create a Rydberg atom. Rydberg atoms contain a highly excited electron with a very large quantum number. In the Rice experiments, potassium atoms with quantum numbers between 300 and 600 were studied.


"In such excited states, the potassium atoms become hundreds of thousands of times larger than normal and approach the size of a period at the end of a sentence," Dunning said. "Thus, they are good candidates to test Bohr's prediction."


He said comparing the classical and quantum descriptions of the electron orbits is complicated, in part because electrons exist as both particles and waves. To "locate" an electron, physicists calculate the likelihood of finding the electron at different locations at a given time. These predictions are combined to create a "wave function" that describes all the places where the electron might be found. Normally, an electron's wave function looks like a diffuse cloud that surrounds the atomic nucleus, because the electron might be found on any side of the nucleus at a given time.


Dunning and co-workers previously used a tailored sequence of electric field pulses to collapse the wave function of an electron in a Rydberg atom; this limited where it might be found to a localized, comma-shaped area called a "wave packet." This localized wave packet orbited the nucleus of the atom much like a planet orbits the sun. But the effect lasted only for a brief period.


"We wanted to see if we could develop a way to use radio frequency waves to capture this localized electron and make it orbit the nucleus indefinitely without spreading out," Ye said.


They succeeded by applying a radio frequency field that rotated around the nucleus itself. This field ensnared the localized electron and forced it to rotate in lockstep around the nucleus.


A further electric field pulse was used to measure the final result by taking a snapshot of the wave packet and destroying the delicate Rydberg atom in the process. After the experiment had been run tens of thousands of times, all the snapshots were combined to show that Bohr's prediction was correct: The classical and quantum descriptions of the orbiting electron wave packets matched. In fact, the classical description of the wave packet trapped by the rotating field parallels the classical physics that explains the behavior of Jupiter's Trojan asteroids.


Jupiter's 4,000-plus Trojan asteroids -- so called because each is named for a hero of the Trojan wars -- have the same orbit as Jupiter and are contained in comma-shaped clouds that look remarkably similar to the localized wave packets created in the Rice experiments. And just as the wave packet in the atom is trapped by the combined electric field from the nucleus and the rotating wave, the Trojans are trapped by the combined gravitational field of the sun and orbiting Jupiter.


The researchers are now working on their next experiment: They're attempting to localize two electrons and have them orbit the nucleus like two planets in different orbits.


"The level of control that we're able to achieve in these atoms would have been unthinkable just a few years ago and has potential applications in, for example, quantum computing and in controlling chemical reactions using ultrafast lasers," Dunning said.


The research was funded by the National Science Foundation, the Robert A. Welch Foundation, the Austrian Science Fund and the Department of Energy. Paper co-authors include S. Yoshida of the Vienna University of Technology; C.O. Reinhold of Oak Ridge National Laboratory and the University of Tennessee; and J. Burgdörfer of Vienna University of Technology and the University of Tennessee.


Story Source:



The above story is reprinted from materials provided by Rice University.


Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

B. Wyker, S. Ye, F. Dunning, S. Yoshida, C. Reinhold, J. Burgdörfer. Creating and Transporting Trojan Wave Packets. Physical Review Letters, 2012; 108 (4) DOI: 10.1103/PhysRevLett.108.043001

How seawater could corrode nuclear fuel

Japan used seawater to cool nuclear fuel at the stricken Fukushima-Daiichi nuclear plant after the tsunami in March 2011 -- and that was probably the best action to take at the time, says Professor Alexandra Navrotsky of the University of California, Davis.


But Navrotsky and others have since discovered a new way in which seawater can corrode nuclear fuel, forming uranium compounds that could potentially travel long distances, either in solution or as very small particles. The research team published its work Jan. 23 in the Proceedings of the National Academy of Sciences.


"This is a phenomenon that has not been considered before," said Alexandra Navrotsky, distinguished professor of ceramic, earth and environmental materials chemistry. "We don't know how much this will increase the rate of corrosion, but it is something that will have to be considered in future."


Japan used seawater to avoid a much more serious accident at the Fukushima-Daiichi plant, and Navrotsky said, to her knowledge, there is no evidence of long-distance uranium contamination from the plant.


Uranium in nuclear fuel rods is in a chemical form that is "pretty insoluble" in water, Navrotsky said, unless the uranium is oxidized to uranium-VI -- a process that can be facilitated when radiation converts water into peroxide, a powerful oxidizing agent.


Peter Burns, professor of civil engineering and geological sciences at the University of Notre Dame and a co-author of the new paper, had previously made spherical uranium peroxide clusters, rather like carbon "buckyballs," that can dissolve or exist as solids.


In the new paper, the researchers show that in the presence of alkali metal ions such as sodium -- for example, in seawater -- these clusters are stable enough to persist in solution or as small particles even when the oxidizing agent is removed.


In other words, these clusters could form on the surface of a fuel rod exposed to seawater and then be transported away, surviving in the environment for months or years before reverting to more common forms of uranium, without peroxide, and settling to the bottom of the ocean. There is no data yet on how fast these uranium peroxide clusters will break down in the environment, Navrotsky said.


Navrotsky and Burns worked with the following co-authors: postdoctoral researcher Christopher Armstrong and project scientist Tatiana Shvareva, UC Davis; May Nyman, Sandia National Laboratory, Albuquerque, N.M.; and Ginger Sigmon, University of Notre Dame. The U.S. Department of Energy supported the project.


Story Source:



The above story is reprinted from materials provided by University of California - Davis.


Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

C. R. Armstrong, M. Nyman, T. Shvareva, G. E. Sigmon, P. C. Burns, A. Navrotsky. Uranyl peroxide enhanced nuclear fuel corrosion in seawater. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1119758109

New material to remove radioactive gas from spent nuclear fuel

 Research by a team of Sandia chemists could impact worldwide efforts to produce clean, safe nuclear energy and reduce radioactive waste.


The Sandia researchers have used metal-organic frameworks (MOFs) to capture and remove volatile radioactive gas from spent nuclear fuel. "This is one of the first attempts to use a MOF for iodine capture," said chemist Tina Nenoff of Sandia's Surface and Interface Sciences Department.


The discovery could be applied to nuclear fuel reprocessing or to clean up nuclear reactor accidents. A characteristic of nuclear energy is that used fuel can be reprocessed to recover fissile materials and provide fresh fuel for nuclear power plants. Countries such as France, Russia and India are reprocessing spent fuel.


The process also reduces the volume of high-level wastes, a key concern of the Sandia researchers. "The goal is to find a methodology for highly selective separations that result in less waste being interred," Nenoff said.


Part of the challenge of reprocessing is to separate and isolate radioactive components that can't be burned as fuel. The Sandia team focused on removing iodine, whose isotopes have a half-life of 16 million years, from spent fuel.


They studied known materials, including silver-loaded zeolite, a crystalline, porous mineral with regular pore openings, high surface area and high mechanical, thermal and chemical stability. Various zeolite frameworks can trap and remove iodine from a stream of spent nuclear fuel, but need added silver to work well.


"Silver attracts iodine to form silver iodide," Nenoff said. "The zeolite holds the silver in its pores and then reacts with iodine to trap silver iodide."


But silver is expensive and poses environmental problems, so the team set out to engineer materials without silver that would work like zeolites but have higher capacity for the gas molecules. They explored why and how zeolite absorbs iodine, and used the critical components discovered to find the best MOF, named ZIF-8.


"We investigated the structural properties on how they work and translated that into new and improved materials," Nenoff said.


MOFs are crystalline, porous materials in which a metal center is bound to organic molecules by mild self-assembly chemical synthesis. The choice of metal and organic result in a very specific final framework.


The trick was to find a MOF highly selective for iodine. The Sandia researchers took the best elements of the zeolite Mordenite -- its pores, high surface area, stability and chemical absorption -- and identified a MOF that can separate one molecule, in this case iodine, from a stream of molecules. The MOF and pore-trapped iodine gas can then be incorporated into glass waste for long-term storage.


The Sandia team also fabricated MOFs, made of commercially available products, into durable pellets. The as-made MOF is a white powder with a tendency to blow around. The pellets provide a stable form to use without loss of surface area, Nenoff said.


Sandia has applied for a patent on the pellet technology, which could have commercial applications.


The Sandia researchers are part of the Off-Gas Sigma Team, which is led by Oak Ridge National Laboratory and studies waste-form capture of volatile gasses associated with nuclear fuel reprocessing. Other team members -- Pacific Northwest, Argonne and Idaho national laboratories -- are studying other volatile gases such as krypton, tritium and carbon.


The project began six years ago and the Sigma Team was formalized in 2009. It is funded by the U.S. Department of Energy Office of Nuclear Energy.


Sandia's iodine and MOFs research was featured in two recent articles in the Journal of the American Chemical Society authored by Nenoff and team members Dorina Sava, Mark Rodriguez, Jeffery Greathouse, Paul Crozier, Terry Garino, David Rademacher, Ben Cipiti, Haiqing Liu, Greg Halder, Peter Chupas, and Karena Chapman. Chupas, Halder and Chapman are from Argonne.


"The most important thing we did was introduce a new class of materials to nuclear waste remediation," said Sava, postdoctoral appointee on the project.


Nenoff said another recent paper in Industrial & Engineering Chemistry Research shows a one-step process that incorporates MOFs with iodine in a low-temperature, glass waste form. "We have a volatile off-gas capture using a MOF and we have a durable waste form," Nenoff said.


Nenoff and her colleagues are continuing their research into new and optimized MOFs for enhanced volatile gas separation and capture.


"We've shown that MOFs have the capacity to capture and, more importantly, retain many times more iodine than current materials technologies," said Argonne's Chapman.



Other bookmarking and sharing tools:


Story Source:



The above story is reprinted from materials provided by DOE/Sandia National Laboratories, via Newswise.


Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal References:

Karena W. Chapman, Dorina F. Sava, Gregory J. Halder, Peter J. Chupas, Tina M. Nenoff. Trapping Guests within a Nanoporous Metal–Organic Framework through Pressure-Induced Amorphization. Journal of the American Chemical Society, 2011; 133 (46): 18583 DOI: 10.1021/ja2085096Dorina F. Sava, Mark A. Rodriguez, Karena W. Chapman, Peter J. Chupas, Jeffery A. Greathouse, Paul S. Crozier, Tina M. Nenoff. Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society, 2011; 133 (32): 12398 DOI: 10.1021/ja204757x

Graphene supermaterial goes superpermeable: Can be used to distill alcohol

 Wonder material graphene has revealed another of its extraordinary properties -- University of Manchester researchers have found that it is superpermeable with respect to water.


Graphene is one of the wonders of the science world, with the potential to create foldaway mobile phones, wallpaper-thin lighting panels and the next generation of aircraft. The new finding at the University of Manchester gives graphene's potential a most surprising dimension -- graphene can also be used for distilling alcohol.


In a report published in Science, a team led by Professor Sir Andre Geim shows that graphene-based membranes are impermeable to all gases and liquids (vacuum-tight). However, water evaporates through them as quickly as if the membranes were not there at all.


This newly-found property can now be added to the already long list of superlatives describing graphene. It is the thinnest known material in the universe and the strongest ever measured. It conducts electricity and heat better than any other material. It is the stiffest one too and, at the same time, it is the most ductile. Demonstrating its remarkable properties won University of Manchester academics the Nobel Prize in Physics in 2010.


Now the University of Manchester scientists have studied membranes from a chemical derivative of graphene called graphene oxide. Graphene oxide is the same graphene sheet but it is randomly covered with other molecules such as hydroxyl groups OH-. Graphene oxide sheets stack on top of each other and form a laminate.


The researchers prepared such laminates that were hundreds times thinner than a human hair but remained strong, flexible and were easy to handle.


When a metal container was sealed with such a film, even the most sensitive equipment was unable to detect air or any other gas, including helium, to leak through.


It came as a complete surprise that, when the researchers tried the same with ordinary water, they found that it evaporates without noticing the graphene seal. Water molecules diffused through the graphene-oxide membranes with such a great speed that the evaporation rate was the same independently whether the container was sealed or completely open.


Dr Rahul Nair, who was leading the experimental work, offers the following explanation: "Graphene oxide sheets arrange in such a way that between them there is room for exactly one layer of water molecules. They arrange themselves in one molecule thick sheets of ice which slide along the graphene surface with practically no friction.


"If another atom or molecule tries the same trick, it finds that graphene capillaries either shrink in low humidity or get clogged with water molecules."


"Helium gas is hard to stop. It slowly leaks even through a millimetre -thick window glass but our ultra-thin films completely block it. At the same time, water evaporates through them unimpeded. Materials cannot behave any stranger," comments Professor Geim. "You cannot help wondering what else graphene has in store for us."


"This unique property can be used in situations where one needs to remove water from a mixture or a container, while keeping in all the other ingredients," says Dr Irina Grigorieva who also participated in the research.


"Just for a laugh, we sealed a bottle of vodka with our membranes and found that the distilled solution became stronger and stronger with time. Neither of us drinks vodka but it was great fun to do the experiment," adds Dr Nair.


The Manchester researchers report this experiment in their Science paper, too, but they say they do not envisage use of graphene in distilleries, nor offer any immediate ideas for applications.


However, Professor Geim adds 'The properties are so unusual that it is hard to imagine that they cannot find some use in the design of filtration, separation or barrier membranes and for selective removal of water'.


Story Source:



The above story is reprinted from materials provided by Manchester University, via AlphaGalileo.


Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, A. K. Geim. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science, 2012; 335 (6067): 442 DOI: 10.1126/science.1211694

Scientists create first atomic X-ray laser

ScienceDaily (Jan. 25, 2012) — Scientists working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have created the shortest, purest X-ray laser pulses ever achieved, fulfilling a 45-year-old prediction and opening the door to a new range of scientific discovery.

The researchers, reporting in Nature, aimed SLAC's Linac Coherent Light Source (LCLS) at a capsule of neon gas, setting off an avalanche of X-ray emissions to create the world's first "atomic X-ray laser."

"X-rays give us a penetrating view into the world of atoms and molecules," said physicist Nina Rohringer, who led the research. A group leader at the Max Planck Society's Advanced Study Group in Hamburg, Germany, Rohringer collaborated with researchers from SLAC, DOE's Lawrence Livermore National Laboratory and Colorado State University.

"We envision researchers using this new type of laser for all sorts of interesting things, such as teasing out the details of chemical reactions or watching biological molecules at work," she added. "The shorter the pulses, the faster the changes we can capture. And the purer the light, the sharper the details we can see."

The new atomic X-ray laser fulfills a 1967 prediction that X-ray lasers could be made in the same manner as many visible-light lasers -- by inducing electrons to fall from higher to lower energy levels within atoms, releasing a single color of light in the process. But until 2009, when LCLS turned on, no X-ray source was powerful enough to create this type of laser.

To make the atom laser, LCLS's powerful X-ray pulses -- each a billion times brighter than any available before -- knocked electrons out of the inner shells of many of the neon atoms in the capsule. When other electrons fell in to fill the holes, about one in 50 atoms responded by emitting a photon in the X-ray range, which has a very short wavelength. Those X-rays then stimulated neighboring neon atoms to emit more X-rays, creating a domino effect that amplified the laser light 200 million times.

Although LCLS and the neon capsule are both lasers, they create light in different ways and emit light with different attributes. The LCLS passes high-energy electrons through alternating magnetic fields to trigger production of X-rays; its X-ray pulses are brighter and much more powerful. The atomic laser's pulses are only one-eighth as long and their color is much more pure, qualities that will enable it to illuminate and distinguish details of ultrafast reactions that had been impossible to see before.

"This achievement opens the door for a new realm of X-ray capabilities," said John Bozek, LCLS instrument scientist. "Scientists will surely want new facilities to take advantage of this new type of laser."

For example, researchers envision using both LCLS and atomic laser pulses in a synchronized one-two punch: The first laser triggers a change in a sample under study, and the second records with atomic-scale precision any changes that occurred within a few quadrillionths of a second.

In future experiments, Rohringer says she will try to create even shorter-pulsed, higher-energy atomic X-ray lasers using oxygen, nitrogen or sulfur gas.

Additional authors included Richard London, Felicie Albert, James Dunn, Randal Hill and Stefan P. Hau-Riege from Lawrence Livermore National Laboratory (LLNL); Duncan Ryan, Michael Purvis and Jorge J. Rocca from Colorado State University; and Christoph Bostedt from SLAC.

The work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program. Authors Roca, Purvis and Ryan were supported by the DOE Office of Science. LCLS is a national scientific user facility operated by SLAC and supported by DOE's Office of Science.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by DOE/SLAC National Accelerator Laboratory.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Nina Rohringer, Duncan Ryan, Richard A. London, Michael Purvis, Felicie Albert, James Dunn, John D. Bozek, Christoph Bostedt, Alexander Graf, Randal Hill, Stefan P. Hau-Riege, Jorge J. Rocca. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature, 2012; 481 (7382): 488 DOI: 10.1038/nature10721

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.