To further explore diamonds' quantum computing potential, researchers from the University of Science and Technology of China tested the properties of a common defect found in diamond: the nitrogen-vacancy (NV) center.
Consisting of a nitrogen atom impurity paired with a 'hole' where a carbon atom is absent from the matrix structure, the NV center has the potential to store information because of the predictable way in which electrons confined in the center interact with electromagnetic waves. The research team probed the energy level properties of the trapped electrons by cooling the diamonds to an extremely chilly 5.6 degrees Kelvin and then measuring the magnetic resonance and fluorescent emission spectra. The team also measured the same spectra at gradually warmer increments, up to 295 degrees Kelvin.
The results, as reported in the AIP's journal Applied Physics Letters, show that at temperatures below 100 Kelvin the electrons' transition energies, or the energies required to get from one energy level to the next, were stable. Shifting transition energies could make quantum mechanical manipulations tricky, so cooler temperatures may aid the study and development of diamonds for quantum computation and ultra-sensitive detectors, the authors write.
The above story is reprinted (with editorial adaptations ) from materials provided by American Institute of Physics, via EurekAlert!, a service of AAAS.
Journal Reference:
X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C Guo. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Applied Physics Letters, 2011
No comments:
Post a Comment